ECS 455 Chapter 1 Introduction \& Review

1.3 Wireless Channel (Part 1)

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:
 BKD 3601-7

Monday 9:20-10:20
Wednesday 9:20-10:20

Wireless Channel

- Large-scale propagation effects

1. Path loss
2. Shadowing

- Typically frequency independent
- Small-scale propagation effects
- Variation due to the constructive and
 destructive addition of multipath signal components.
- Occur over very short distances, on the order of the signal wavelength.

$$
\lambda=\frac{c}{f} \longleftarrow \approx 3 \times 10^{8}[\mathrm{~m} / \mathrm{s}]
$$

$$
f=3 \mathrm{GHz} \rightarrow \lambda=0.1 \mathrm{~m}
$$

Path loss

- Caused by
- dissipation of the power radiated by the transmitter
- effects of the propagation channel
- Models generally assume that it is the same at a given transmit-receive distance.
- Variation occurs over large distances (100-1000 m)

Path Loss (PL)

$$
P_{L}=\frac{\text { Transmitted power }}{\text { Average received power }}=\frac{P_{t}}{P_{r}}
$$

Averaged over any random variations

- Free-Space Path Loss:

$$
\frac{P_{r}}{P_{t}} \propto \frac{1}{d^{2}}
$$

- P_{r} falls off inversely proportional to the square of the distance d between the Tx and Rx antennas.
- Simplified Path Loss Model:

$$
\frac{P_{r}}{P_{t}}=K\left(\frac{d_{0}}{d}\right)^{\gamma}
$$

Friis Equation (Free-Space PL)

- One of the most fundamental equations in antenna theory

1 for non-directional antennas

$$
\frac{P_{r}}{P_{t}}=\left(\frac{\sqrt{G_{T x} G_{R x}} \lambda}{4 \pi d}\right)^{2}=\left(\frac{\sqrt{G_{T x} G_{R x} c}}{4 \pi d f}\right)^{2}
$$

- More power is lost at higher frequencies.
$0.7 \mathrm{GHz} \longrightarrow 2.4 \mathrm{GHz} \longrightarrow 5 \mathrm{GHz} \longrightarrow 60 \mathrm{GHz}$

$10.7 \mathrm{~dB} \operatorname{loss}$	$6.4 \mathrm{~dB} \operatorname{loss}$	$21.6 \mathrm{~dB} \operatorname{loss}$
$20 \log _{10} \frac{2.4}{0.7}$	$20 \log _{10} \frac{5}{2.4}$	$20 \log _{10} \frac{60}{5}$

- Some of these losses can be offset by reducing the maximum operating range.
- The remaining loss must be compensated for by increasing the antenna gain.

Path Loss Models

- Analytical models
- Maxwell's equations
- Ray tracing

Prohibitive (complex, impractical)
Need to know / specify "almost everything" about the environment.

- Empirical models: Developed to predict path loss in typical environment.
- Okumura
- Hata
- COST 231
- by EURO-COST (EUROpean Cooperative for Scientific and Technical research)
- Piecewise Linear (Multi-Slope) Model
- Tradeoff: Simplified Path Loss Model

Indoor Attenuation Factors

- Building penetration loss: 8-20 dB (better if behind windows)
- Attenuation between floors
- @ 900 MHz
- 10-20 dB when the Tx and Rx are separated by a single floor
- 6-10 dB per floor for the next three subsequent floors
- A few dB per floor for more than four floors
- Typically worse at higher frequency.
- Attenuation across floors

Partition Type	Partition Loss in dB
Cloth Partition	1.4
Double Plasterboard Wall	3.4
Foil Insulation	3.9
Concrete wall	13
Aluminum Siding	20.4
All Metal	26

Simplified Path Loss Model ${ }^{\frac{P}{P}=K\left(\frac{d}{d}\right)^{\gamma}}$

$$
\underset{[\mathrm{dB}]}{10 \log _{10} \frac{P_{r}}{P_{t}}}=\left(10 \log _{10} K d_{0}^{\gamma}\right)-10 \gamma \log _{10} d
$$

- K is a unitless constant which depends on the antenna characteristics and the average channel attenuation

Captures the essence of signal propagation without resorting to complicated path loss models, which are only approximations to the real channel anyway!

- $\left(\frac{\lambda}{4 \pi d_{0}}\right)^{2}$ for free-space path gain at distance d_{0} assuming omnidirectional antennas
- d_{0} is a reference distance for the antenna far-field
- Typically 1-10 m indoors and 10-100 m outdoors.
(Near-field has scattering phenomena.)
- γ is the path loss exponent.

Path Loss Exponent γ

- 2 in free-space model
- 4 in two-ray model
[Goldsmith, 2005, eq. 2.17]
- Cellular: 3.5-4.5
[Myung and Goodman, 2008, p 17]
- Larger@ higher freq.

Environment	γ range
Urban macrocells	$3.7-6.5$
Urban microcells	$2.7-3.5$
Office Building (same floor)	$1.6-3.5$
Office Building (multiple floors)	$2-6$
Store	$1.8-2.2$
Factory	$1.6-3.3$
Home	3

- Lower@ higher antenna heights

Shadowing (or Shadow Fading)

- Additional attenuation caused by obstacles (large objects such as buildings and hills) between the transmitter and receiver.
- Think: cloud blocking sunlight
- Attenuate signal power through absorption, reflection, scattering, and diffraction.
- Variation occurs over distances proportional to the length of the obstructing object ($10-100 \mathrm{~m}$ in outdoor environments and less in indoor environments).

Contours of Constant Received Power

[Goldsmith, 2005, Fig 2.10]

Log-normal shadowing

- Random variation due to blockage from objects in the signal path and changes in reflecting surfaces and scattering objects \rightarrow random variations of the received power at a given distance

$$
10 \log _{10} \frac{P_{t}}{P_{r}} \sim \mathcal{N}\left(\mu, \mathscr{\sigma}^{2}\right)_{\mathrm{in} \mathrm{~dB}}^{4-13 \mathrm{~dB}}
$$

- This model has been confirmed empirically to accurately model the variation in received power in both outdoor and indoor radio propagation environments.
[Erceg et al, 1999] and [Ghassemzadeh et al, 2003]

Log-normal shadowing (motivation)

- Location, size, dielectric properties of the blocking objects as well as the changes in reflecting surfaces and scattering objects that cause the random attenuation are generally unknown \Rightarrow statistical models must be used to characterize this attenuation.
- Assume a large number of shadowing objects between the transmitter and receiver

Without the objects, the attenuation factor is $K\left(\frac{d_{0}}{d}\right)^{\gamma}$.

Each object introduce extra power loss factor of α_{i}.

$$
\begin{aligned}
& \text { So, } \frac{P_{r}}{P_{t}}=K\left(\frac{d_{0}}{d}\right)^{\gamma} \prod_{i} \alpha_{i} \\
& 10 \log _{10} \frac{P_{r}}{P_{t}}=10 \log _{10} K\left(\frac{d_{0}}{d}\right)^{\gamma}+\sum_{i} 10 \log _{10} \alpha_{i}
\end{aligned}
$$

PDF of Lognormal RV

- Consider a random variable

$$
R=\frac{P_{t}}{P_{r}}
$$

- Suppose

$$
10 \log _{10} R \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- Then,

$$
f_{R}(r)= \begin{cases}\frac{1}{\sqrt{2 \pi} \sigma} \frac{10}{\ln 10} \frac{1}{r} e^{-\frac{1}{2}\left(\frac{(10 \log r)-\mu}{\sigma}\right)^{2}}, & r>0 \\ 0, & \text { otherwise. }\end{cases}
$$

PDF of Lognormal RV (Proof)

Suppose $c \log _{b} Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Let $X=c \log _{b} Y$. Note that $X=c \log _{b} Y=\frac{c}{\ln b} \ln (Y)=k \ln (Y)$.
Then, $Y=e^{\frac{X}{k}}$ where $k=\frac{c}{\ln b}$.
Recall, from ECS315 that to find the pdf of $Y=g(X)$ from the pdf of X, we first find the cdf of Y and then differentiate to get its pdf:

$$
\begin{aligned}
& F_{Y}(y)=P[Y \leq y]=P\left[e^{\frac{X}{k}} \leq y\right]=P[X \leq k \ln (y)]=F_{X}(k \ln (y)) . \\
& f_{Y}(y)=\frac{d}{d y} F_{X}(k \ln (y))=\frac{k}{y} f_{X}(k \ln (y))=\frac{1}{\sqrt{2 \pi} \sigma} \frac{k}{y} e^{-\frac{1}{2}\left(\frac{k \ln (y)-\mu}{\sigma}\right)^{2}} .
\end{aligned}
$$

PDF of Lognormal RV (Proof)

Suppose $c \log _{b} Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Let $X=c \log _{b} Y$. Note that $X=c \log _{b} Y=\frac{c}{\ln b} \ln (Y)=k \ln (Y)$.
Then, $Y=e^{\frac{X}{k}}$ where $k=\frac{c}{\ln b}$.
Alternatively, to find the pdf of $Y=g(X)$ from the pdf of X, when g is monotone, we may use the formula:

$$
f_{X}(x) d x=f_{Y}(y) d y \Longleftrightarrow f_{Y}(y)=\frac{d x}{d y} f_{X}(x)
$$

This gives $f_{Y}(y)=\frac{k}{y} f_{X}\left(c \log _{b} y\right) \quad$ (same as what we found earlier).

Signal Power and Energy

- Consider a signal $g(t)$.
- Energy: $E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f$.
- Power: $\left.P_{g}=\left.\langle | g(t)\right|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|g(t)|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|g(t)|^{2} d t$.
- $g(t)$ is an energy signal iff $0<E_{g}<\infty$.
- In which case, $P_{g}=0$.
- $g(t)$ is a power signal iff $0<P_{g}<\infty$.
- In which case, $E_{g}=\infty$.
- If $g(t)$ is periodic with period T_{0}, then
- $g(t)$ is a power signal,
- $P_{g}=\frac{1}{T_{0}} \int_{T_{0}}|g(t)|^{2} d t$,
- $g(t)$ can be expanded in terms of complex exponential signals as $\sum_{k=-\infty}^{\infty} c_{k} e^{j k k_{T_{0}}^{2 \pi} t}$ (Fourier series) and $P_{g}=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}$ (Parseval's identity)

Power Calculation: Examples

$\begin{array}{ll}g(t)=\cos \left(2 \pi f_{c} t\right)=\frac{1}{2} e^{j 2 \pi f_{c} t}+\frac{1}{2} e^{-j 2 \pi f_{c} t} & P_{g}=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2} \\ g(t)=a(t) \cos \left(2 \pi f_{c} t+\phi\right) & P_{g}=\frac{1}{2} P_{a}\end{array}$
Assume $A\left(f-f_{c}\right)$ and $A\left(f+f_{c}\right)$ do not overlap.
$P_{g}=\frac{1}{2} \sum_{k} P_{a_{k}}$
Assume the $A_{k}\left(f \pm f_{k}\right)$'s do not overlap.
$g(t)=a_{1} \cos \left(2 \pi f_{c} t+\phi_{1}\right)+a_{2} \cos \left(2 \pi f_{c} t+\phi_{2}\right)$

$$
P_{g}=\frac{1}{2} a_{1}^{2}+\frac{1}{2} a_{2}^{2}+a_{1} a_{2} \cos \left(\phi_{2}-\phi_{1}\right)
$$

Ray tracing

- Approximate the solution of Maxwell's equations
- Approximate the propagation of electromagnetic waves by representing the wavefronts as simple particles.
- Thus, the reflection, diffraction, and scattering effects on the wavefront are approximated using simple geometric equations instead of Maxwell's more complex wave equations.
- Assumption: the received waveform can be approximated by the sum of the free space wave from the transmitter plus the reflected free space waves from each of the reflecting obstacles.

$$
x(t)=\sqrt{2 P_{t}} \cos \left(2 \pi f_{c} t\right) \quad y(t)=\frac{\alpha}{d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{d}{c}\right)\right)
$$

Ex. One reflecting wall (1/4)

- There is a fixed antenna transmitting the sinusoid $x(t)$, a fixed receive antenna, and a single perfectly reflecting large fixed wall.
- Assume that the wall is very large, the reflected wave at a given point is the same (except for a sign change) as the free space wave that would exist on the opposite side of the wall if the wall were not present

Ex. One reflecting wall (2/4)

$$
\begin{aligned}
x(t) & =\sqrt{2 P_{t}} \cos \left(2 \pi f_{c} t\right) \\
y(t) & =\frac{\alpha}{d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{d}{c}\right)\right)-\frac{\alpha}{w+w-d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{w+w-d}{c}\right)\right) \\
& =\frac{\alpha}{d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{d}{c}\right)\right)-\frac{\alpha}{2 w-d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{2 w-d}{c}\right)\right) \\
& =\frac{\alpha}{d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{d}{c}\right)\right)+\frac{\alpha}{2 w-d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{2 w-d}{c}\right)-\pi\right)
\end{aligned}
$$

Ex. One reflecting wall (3/4)

$$
\begin{aligned}
y(t) & =\frac{\alpha}{d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{d}{c}\right)\right)+\frac{\alpha}{2 w-d} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{2 w-d}{c}\right)-\pi\right) \\
P_{y} & =P_{t}\left(\left(\frac{\alpha}{d}\right)^{2}+\left(\frac{\alpha}{2 w-d}\right)^{2}+2 \frac{\alpha^{2}}{d(2 w-d)} \cos (\Delta \phi)\right)
\end{aligned}
$$

$$
\Delta \phi=2 \pi f_{c} \frac{2 w-2 d}{c}+\pi=2 \pi \frac{1}{\lambda / 2}(w-d)+\pi
$$

form constructive and destructive interference pattern

Ex. One reflecting wall (4/4)

Ex. Two-Ray Model

 Delay spread $=\frac{r_{2}}{c}-\frac{r_{1}}{c}$$$
\begin{aligned}
y(t) & =\frac{\alpha}{r_{1}} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r_{1}}{c}\right)\right)-\frac{\alpha}{r_{2}} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r_{2}}{c}\right)\right) \\
\frac{P_{y}}{P_{x}} & =\left|\frac{\alpha}{r_{1}} e^{-j 2 \pi f_{c} \frac{r_{1}}{c}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}}{c}}\right|^{2}=\left|\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi f_{c} \frac{r_{2}-r_{1}}{c}}\right|^{2}
\end{aligned}
$$

Floor (Ground)

Assume ground reflection coefficient $=-1$.

Ex. Two-Ray Model

Ex. Two-Ray Model

Ex. Two-Ray Model

Ex. Two-Ray Model (Approximation)

$$
\frac{P_{y}}{P_{x}} \approx\left|\frac{\alpha}{r_{1}}-\frac{\alpha}{r_{2}} e^{-j 2 \pi \frac{2 h h_{r}}{\lambda}}\right|^{2} \approx \frac{\alpha}{d}\left|1-e^{-j 2 \pi \frac{2 h h_{t}}{\lambda d}}\right|^{2} \quad d \gg h_{t}, h_{r}
$$

$$
\begin{aligned}
& \approx\left(\frac{\alpha}{d}\right)^{2}\left|1-\left(1-j 2 \pi \frac{2 h_{t} h_{r}}{\lambda d}\right)\right|^{2}=\frac{\alpha^{2}}{d^{2}}\left|j 2 \pi \frac{2 h_{t} h_{r}}{\lambda d}\right|^{2}=\left(\frac{4 \pi \alpha h_{t} h_{r}}{\lambda d^{2}}\right)^{2} \\
& =\left(\frac{\sqrt{G_{T x} G_{R x}} h_{t} h_{r}}{d^{2}}\right)^{2} \longleftrightarrow
\end{aligned}
$$

Floor (Ground)

Ex. Two-Ray Model

Ex. Two-Ray Model

dBm

- The range of RF power that must be measured in cellular phones and wireless data transmission equipment varies from
- hundreds of watts in base station transmitters to
- picowatts in receivers.
- For calculations to be made, all powers must be expressed in the same power units, which is usually milliwatts.
- A transmitter power of 100 W is therefore expressed as $100,000 \mathrm{~mW}$. A received power level of 1 pW is therefore expressed as 0.000000001 mW .
- Making power calculations using decimal arithmetic is therefore complicated.
- To solve this problem, the dBm system is used.

Range of RF Power in Watts and dBm

Doppler Shift: 1D Move

- At the transmitter, suppose we have

$$
\sqrt{2 P_{t}} \cos \left(2 \pi f_{c} t+\phi\right)
$$

- At distance r (far enough), we have

$$
\frac{\alpha}{r} \sqrt{2 P_{t}} \cos \left(2 \pi f_{c}\left(t-\frac{r}{c}\right)+\phi\right)
$$

- If moving, r becomes $r(t)$.
- If moving away at a constant velocity v, then $r(t)=r_{0}+v t$.

$$
\frac{\alpha}{r(t)} \cos \left(2 \pi f_{c}\left(t-\frac{r_{0}+v t}{c}\right)+\phi\right)=\frac{\alpha}{r(t)} \cos \left(2 \pi\left(f_{c}-f_{c} \frac{v}{c}\right) t-2 \pi f_{c} \frac{r_{0}}{c}+\phi\right)
$$

Frequency shift

$$
=\frac{v}{\lambda}
$$

Review: Instantaneous Frequency

For a generalized sinusoid signal

$$
A \cos (\theta(t))
$$

the instantaneous frequency at time t is given by

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)
$$

When $\theta(t)=2 \pi f_{c}\left(t-\frac{r(t)}{c}\right)+\phi$,

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)=f_{c}-\frac{f_{c}}{c} \frac{d}{d t} r(t)=f_{c}-\lambda \frac{d}{d t} r(t)
$$

Frequency shift

Doppler Shift: With angle

Rx speed $=v(t)$. At time t, cover distance $\int_{0}^{t} v(\tau) d \tau$

$$
\left\{\begin{aligned}
& r(t)=\sqrt{d^{2}+\ell^{2}(t)-2 d \ell(t) \cos \theta} \\
& \frac{d}{d t} r(t)=\frac{2 \ell(t)-2 d \cos \theta}{2 \sqrt{d^{2}+\ell^{2}(t)-2 d \ell(t) \cos \theta}} v(t) \\
& \underbrace{}_{i}
\end{aligned}\right.
$$

Doppler Shift: Approximation

$$
\begin{aligned}
r(t) & \approx d-\ell(t) \cos \theta \\
\frac{d}{d t} r(t) & \approx-v(t) \cos \theta \\
f_{\text {new }}(t) & \approx f+\frac{v(t) \cos \theta}{\lambda} \\
\Delta f & =\frac{v \cos \theta}{\lambda}
\end{aligned}
$$

For typical vehicle speeds ($75 \mathrm{Km} / \mathrm{hr}$) and frequencies (around 1 GHz), it is on the order of 100 Hz

Big Picture

Transmission impairments in cellular systems

Physics of radio propagation

Extraneous signals

Transmitting and receiving equipment

Attenuation (Path Loss)
Shadowing
Doppler shift
Inter-symbol interference (ISI)
Flat fading
Frequency-selective fading
Co-channel interference
Adjacent channel interference
Impulse noise
White noise
White noise
Nonlinear distortion Frequency and phase offset Timing errors

